Day 2: Red-Nosed Reports
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://blocks.programming.dev/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/22323136
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
Factor
: get-input ( -- reports ) "vocab:aoc-2024/02/input.txt" utf8 file-lines [ split-words [ string>number ] map ] map ; : slanted? ( report -- ? ) { [ [ > ] monotonic? ] [ [ < ] monotonic? ] } || ; : gradual? ( report -- ? ) [ - abs 1 3 between? ] monotonic? ; : safe? ( report -- ? ) { [ slanted? ] [ gradual? ] } && ; : part1 ( -- n ) get-input [ safe? ] count ; : fuzzy-reports ( report -- reports ) dup length <iota> [ remove-nth-of ] with map ; : tolerable? ( report -- ? ) { [ safe? ] [ fuzzy-reports [ safe? ] any? ] } || ; : part2 ( -- n ) get-input [ tolerable? ] count ;
Quite the interesting language choice. It’s so clean. I love it!
C
First went through the input in one pass, number by number, but unfortunately that wouldn’t fly for part 2.
Code
#include "common.h" static int issafe(int *lvs, int n, int skip) { int safe=1, asc=0,prev=0, ns=0,i; for (i=0; safe && i<n; i++) { if (i == skip) { ns = 1; continue; } if (i-ns > 0) safe = safe && lvs[i] != prev && lvs[i] > prev-4 && lvs[i] < prev+4; if (i-ns == 1) asc = lvs[i] > prev; if (i-ns > 1) safe = safe && (lvs[i] > prev) == asc; prev = lvs[i]; } return safe; } int main(int argc, const char **argv) { char buf[64], *rest, *tok; int p1=0,p2=0, lvs[16],n=0, i; if (argc > 1) DISCARD(freopen(argv[1], "r", stdin)); while ((rest = fgets(buf, sizeof(buf), stdin))) { for (n=0; (tok = strsep(&rest, " ")); n++) { assert(n < (int)LEN(lvs)); lvs[n] = (int)strtol(tok, NULL, 10); } for (i=-1; i<n; i++) if (issafe(lvs, n, i)) { p1 += i == -1; p2++; break; } } printf("02: %d %d\n", p1, p2); }
What is this coding style? The function type, name and open brace placement made me think GNU at first, but the code in the body doesn’t look like GCS at all.
BSD more or less. Mostly K&R except for function declarations.
JavaScript
Also wrote a solution in JavaScript to play around with list comprehension. Wrote some utility functions for expressiveness (and lazy evaluation).
Code
const fs = require("fs"); const U = require("./util"); const isSafe = xs => U.pairwise(xs).every(([a,b]) => a!==b && a-b > -4 && a-b < 4) && new Set(U.pairwise(xs).map(([a,b]) => a < b)).size === 1; const rows = fs .readFileSync(process.argv[2] || process.stdin.fd, "utf8") .split("\n") .filter(x => x != "") .map(x => x.split(/ +/).map(Number)); const p1 = U.countBy(rows, isSafe); const p2 = U.countBy(rows, row => isSafe(row) || U.someBy(U.indices(row), i => isSafe([...row.slice(0, i), ...row.slice(i+1)]))); console.log("02:", p1, p2);
https://github.com/sjmulder/aoc/blob/master/2024/js/day02.js
Lisp
Part 1
(defun p1-process-line (line) (mapcar #'parse-integer (str:words line))) (defun line-direction-p (line) "make sure the line always goes in the same direction" (loop for x in line for y in (cdr line) count (> x y) into dec count (< x y) into inc when (and (> dec 0 ) (> inc 0)) return nil when (= x y) return nil finally (return t))) (defun line-in-range-p (line) "makes sure the delta is within 3" (loop for x in line for y in (cdr line) for delta = (abs (- x y)) when (or (> delta 3) ) return nil finally (return t))) (defun test-line-p (line) (and (line-in-range-p line) (line-direction-p line))) (defun run-p1 (file) (let ((data (read-file file #'p1-process-line))) (apply #'+ (mapcar (lambda (line) (if (test-line-p line) 1 0)) data))))
Part 2
(defun test-line-p2 (line) (or (test-line-p (cdr line)) (test-line-p (cdr (reverse line))) (loop for back on line collect (car back) into front when (test-line-p (concatenate 'list front (cddr back))) return t finally (return nil) ))) (defun run-p2 (file) (let ((data (read-file file #'p1-process-line))) (loop for line in data count (test-line-p2 line))))
Haskell
runningDifference :: [Int] -> [Int] runningDifference (a:[]) = [] runningDifference (a:b:cs) = a - b : (runningDifference (b:cs)) isSafe :: [Int] -> Bool isSafe ds = (all (> 0) ds || all (< 0) ds) && (all (flip elem [1, 2, 3] . abs) ds) isSafe2 :: [Int] -> Bool isSafe2 ds = any (isSafe2') (zip [0..length ds] (cycle [ds])) isSafe2' (i, ls) = isSafe . runningDifference $ list where list = dropIndex i ls dropIndex _ [] = [] dropIndex 0 (a:as) = dropIndex (-1) as dropIndex i (a:as) = a : dropIndex (i - 1) as main = do c <- getContents let reports = init . lines $ c let levels = map (map read . words) reports :: [[Int]] let differences = map runningDifference levels let safety = map isSafe differences let safety2 = map isSafe2 levels putStrLn . show . length . filter (id) $ safety putStrLn . show . length . filter (id) $ safety2 return ()
Took me way too long to figure out that I didn’t have to drop one of them differences but the initial Number
J
There is probably a way to write this more point-free. You can definitely see here the friction involved in the way J wants to regard lists as arrays: short rows of the input matrix are zero padded, so you have to snip off the padding before you process each row, and that means you can’t lift some of the operations back up to the parent matrix because it will re-introduce the padding as it reshapes the result; this accounts for a lot of the
"1
everywhere (you can interpretv"1
as “force the verbv
to operate on rank 1 subarrays of the argument”).data_file_name =: '2.data' data =: > 0 ". each cutopen toJ fread data_file_name NB. {. take, i. index of; this removes trailing zeros remove_padding =: {.~ i.&0 NB. }. behead, }: curtail; this computes successive differences diff =: }. - }: NB. a b in_range y == a <: y <: b in_range =: 4 : '(((0 { x) & <:) * (<: & (1 { x))) y' NB. a row is safe if either all successive differences are in [1..3] or all in [_3.._1] NB. +. or ranges =: 2 2 $ 1 3 _3 _1 row_safe =: (+./"1) @: (*/"1) @: (ranges & (in_range"1 _)) @: diff @: remove_padding result1 =: +/ safe"1 data NB. x delete y is y without the xth element delete =: 4 : '(x {. y) , ((>: x) }. y)'"0 _ modified_row =: 3 : 'y , (i.#y) delete y' modified_row_safe =: 3 : '+./"1 row_safe"1 modified_row"1 y' result2 =: +/ modified_row_safe data
Kotlin:
import kotlin.math.abs import kotlin.math.sign data class Report(val levels: List<Int>) { fun isSafe(withProblemDampener: Boolean): Boolean { var orderSign = 0.0f // - 1 is descending; +1 is ascending levels.zipWithNext().forEachIndexed { index, level -> val difference = (level.second - level.first).toFloat() if (orderSign == 0.0f) orderSign = sign(difference) if (sign(difference) != orderSign || abs(difference) !in 1.0..3.0) { // With problem dampener: Drop either element in the pair or the first element from the original list and check if the result is now safe. return if (withProblemDampener) { Report(levels.drop(1)).isSafe(false) || Report(levels.withoutElementAt(index)).isSafe(false) || Report(levels.withoutElementAt(index + 1)).isSafe(false) } else false } } return true } } fun main() { fun part1(input: List<String>): Int = input.map { Report(it.split(" ").map { it.toInt() }).isSafe(false) }.count { it } fun part2(input: List<String>): Int = input.map { Report(it.split(" ").map { it.toInt() }).isSafe(true) }.count { it } // Or read a large test input from the `src/Day01_test.txt` file: val testInput = readInput("Day02_test") check(part1(testInput) == 2) check(part2(testInput) == 4) // Read the input from the `src/Day01.txt` file. val input = readInput("Day02") part1(input).println() part2(input).println() }
The Report#isSafe method essentially solves both parts.
I’ve had a bit of a trip up in part 2:
I initially only checked, if the report was safe, if either elements in the pair were to be removed. But in the edge case, that the first pair has different monotonic behaviour than the rest, the issue would only be detected by the second pair with indices (2, 3), whilst removing the first element in the list would yield a safe report.
def is_safe(report: list[int]) -> bool: global removed acceptable_range = [_ for _ in range(-3,4) if _ != 0] diffs = [] if any([report.count(x) > 2 for x in report]): return False for i, num in enumerate(report[:-1]): cur = num next = report[i+1] difference = cur - next diffs.append(difference) if difference not in acceptable_range: return False if len(diffs) > 1: if diffs[-1] * diffs[-2] <= 0: return False return True with open('input') as reports: list_of_reports = reports.readlines()[:-1] count = 0 failed_first_pass = [] failed_twice = [] for reportsub in list_of_reports: levels = [int(l) for l in reportsub.split()] original = levels.copy() if is_safe(levels): safe = True count += 1 else: failed_first_pass.append(levels) for report in failed_first_pass: print(report) working_copy = report.copy() for i in range(len(report)): safe = False working_copy.pop(i) print("checking", working_copy) if is_safe(working_copy): count += 1 safe = True break else: working_copy = report.copy() print(count)
this took me so fucking long and in the end i just went for brute force anyway. there are still remnants of some of previous, overly complicated, failed attempts, like the hideous
global removed
. In the end, I realized I was fucking up by using remove() instead of pop(), it was causing cases with duplicates where the removal of one would yield a safe result to count as unsafe.
Kotlin
A bit late to the party, but here you go.
import kotlin.math.abs fun part1(input: String): Int { return solve(input, ::isSafe) } fun part2(input: String): Int { return solve(input, ::isDampSafe) } private fun solve(input: String, condition: (List<Int>) -> Boolean): Int { var safeCount = 0 input.lines().forEach { line -> if (line.isNotBlank()) { val nums = line.split("\\s+".toRegex()).map { it.toInt() } safeCount += if (condition(nums)) 1 else 0 } } return safeCount } private fun isSafe(list: List<Int>): Boolean { val safeDiffs = setOf(1, 2, 3) var incCount = 0 var decCount = 0 for (idx in 0..<list.lastIndex) { if (!safeDiffs.contains(abs(list[idx] - list[idx + 1]))) { return false } if (list[idx] <= list[idx + 1]) incCount++ if (list[idx] >= list[idx + 1]) decCount++ } return incCount == 0 || decCount == 0 } private fun isDampSafe(list: List<Int>): Boolean { if (isSafe(list)) { return true } else { for (idx in 0..list.lastIndex) { val shortened = list.toMutableList() shortened.removeAt(idx) if (isSafe(shortened)) { return true } } } return false }
TypeScript
Solution
import { AdventOfCodeSolutionFunction } from "./solutions"; /** * this function evaluates the * @param levels a list to check * @returns -1 if there is no errors, or the index of where there's an unsafe event */ export function EvaluateLineSafe(levels: Array<number>) { // this loop is the checking every number in the line let isIncreasing: boolean | null = null; for (let levelIndex = 1; levelIndex < levels.length; levelIndex++) { const prevLevel = levels[levelIndex - 1]; // previous const level = levels[levelIndex]; // current const diff = level - prevLevel; // difference const absDiff = Math.abs(diff); // absolute difference // check if increasing too much or not at all if (absDiff == 0 || absDiff > 3) return levelIndex; // go to the next report // set increasing if needed if (isIncreasing === null) { isIncreasing = diff > 0; continue; // compare the next numbers } // check if increasing then decreasing if (!(isIncreasing && diff > 0 || !isIncreasing && diff < 0)) return levelIndex; // go to the next report } return -1; } export const solution_2: AdventOfCodeSolutionFunction = (input) => { const reports = input.split("\n"); let safe = 0; let safe_damp = 0; // this loop is for every line main: for (let i = 0; i < reports.length; i++) { const report = reports[i].trim(); if (!report) continue; // report is empty const levels = report.split(" ").map((v) => Number(v)); const evaluation = EvaluateLineSafe(levels); if(evaluation == -1) { safe++; continue; } // search around where it failed for (let offset = evaluation - 2; offset <= evaluation + 2; offset++) { // delete an evaluation in accordance to the offset let newLevels = [...levels]; newLevels.splice(offset, 1); const newEval = EvaluateLineSafe(newLevels); if(newEval == -1) { safe_damp++; continue main; } } } return `Part 1: ${safe} Part 2: ${safe + safe_damp}`; }
God, I really wish my solutions weren’t so convoluted. Also, this is an O(N^3) solution…
I don’t think your solution is O(N^3). Can you explain your reasoning?
3 nested for loops
It’s not as simple as that. You can have 20 nested for loops with complexity of O(1) if all of them only ever finish one iteration.
Or you can have one for loop that iterates 2^N times.
What do you think my complexity is?
I think it could be maybe O(n^2) because the other for loop which tries elements around the first error will only execute a constant of 5 times in the worst case? I’m unsure.
It’s O(n).
If you look at each of the levels of all reports, you will access it a constant number of times: at most twice in each call to
EvaluateLineSafe
, and you will callEvaluateLineSafe
at most six times for each report.It really depends on what your parameter n is. If the only relevant size is the number of records (let’s say that is n), then this solution takes time in O(n), because it loops over records only once at a time. This ignores the length of records by considering it constant.
If we also consider the maximum length of records (let’s call it m), then your solution, and most others I’ve seen in this thread, has a time complexity in O(n * m^2) for part 2.
Haskell
Had some fun with arrows.
import Control.Arrow import Control.Monad main = getContents >>= print . (part1 &&& part2) . fmap (fmap read . words) . lines part1 = length . filter isSafe part2 = length . filter (any isSafe . removeOne) isSafe = ap (zipWith (-)) tail >>> (all (between 1 3) &&& all (between (-3) (-1))) >>> uncurry (||) where between a b = (a <=) &&& (<= b) >>> uncurry (&&) removeOne [] = [] removeOne (x : xs) = xs : fmap (x :) (removeOne xs)
I like the branched pipelines in
isSafe
! Very cute.
python
solution
import re import aoc def setup(): return (aoc.get_lines(2), 0) def safe(data): order = 0 if data[0] < data[1] else 1 for i in range(0, len(data) - 1): h = data[i] t = data[i + 1] d = abs(h - t) if d not in [1, 2, 3] or (order == 0 and h >= t) or ( order == 1 and h <= t): return False return True def one(): lines, acc = setup() for l in lines: if safe([int(x) for x in re.findall(r'\d+', l)]): acc += 1 print(acc) def two(): lines, acc = setup() for l in lines: data = [int(x) for x in re.findall(r'\d+', l)] for i in range(len(data)): if safe(data[:i] + data[i + 1:]): acc += 1 break print(acc) one() two()
R (R-Wasm)
input = file('input2024day2.txt',open='r') lines = readLines(input) library(stringr) safe = 0 safe2 = 0 for (ln in lines){ vals = as.numeric(unlist(str_split(ln,' '))) diffs = diff(vals) cond1 = min(diffs) > 0 || max(diffs) < 0 cond2 = max(abs(diffs)) < 4 if (cond1 && cond2){ safe = safe + 1 } else { #Problem Dampener dampen = FALSE for (omit in -1:-length(vals)){ diffs = diff(vals[omit]) cond1 = min(diffs) > 0 || max(diffs) < 0 cond2 = max(abs(diffs)) < 4 if (cond1 && cond2){ dampen = TRUE } } if (dampen){ safe2 = safe2 + 1} } } print (safe) #Part 1 print (safe + safe2) #Part 2
Nim
import strutils, times, sequtils, sugar # check if level transition in record is safe proc isSafe*(sign:bool, d:int): bool = sign == (d>0) and d.abs in 1..3; #check if record is valid proc validate*(record:seq[int]): bool = let sign = record[0] > record[1]; return (0..record.len-2).allIt(isSafe(sign, record[it] - record[it+1])) # check if record is valid as-is # or if removing any item makes the record valid proc validate2*(record:seq[int]): bool = return record.validate or (0..<record.len).anyIt(record.dup(delete(it)).validate) proc solve*(input:string): array[2,int] = let lines = input.readFile.strip.splitLines; let records = lines.mapIt(it.splitWhitespace.map(parseInt)); result[0] = records.countIt(it.validate); result[1] = records.countIt(it.validate2);
I got stuck on part 2 trying to check everything inside a single loop, which kept getting more ugly. So then I switched to just deleting one item at a time and re-checking the record.
Reworked it after first finding the solution to compress the code a bit, though the range iterators don’t really help with readability.
I did learn about the
sugar
import, which I used to make the sequence duplication more compact:record.dup(delete(it)
.Cool to see another solution in Nim here =)
(0..<record.len).anyIt(record.dup(delete(it)).validate)
That’s smart. I haven’t thought of using iterators to loop over indexes (except in a
for loop
).I got stuck on part 2 trying to check everything inside a single loop, which kept getting more ugly.
Yeah I’ve thought of simple ways to do this and found none. And looking at the input - it’s too easy to bruteforce, especially in compiled lang like Nim.
Elixir
defmodule Day02 do defp part1(reports) do reports |> Enum.map(fn report -> levels = report |> String.split() |> Enum.map(&String.to_integer/1) cond do sequence_is_safe?(levels) -> :safe true -> :unsafe end end) |> Enum.count(fn x -> x == :safe end) end defp part2(reports) do reports |> Enum.map(fn report -> levels = report |> String.split() |> Enum.map(&String.to_integer/1) sequences = 0..(length(levels) - 1) |> Enum.map(fn i -> List.delete_at(levels, i) end) cond do sequence_is_safe?(levels) -> :safe Enum.any?(sequences, &sequence_is_safe?/1) -> :safe true -> :unsafe end end) |> Enum.count(fn x -> x == :safe end) end defp all_gaps_within_max_diff?(numbers) do numbers |> Enum.chunk_every(2, 1, :discard) |> Enum.all?(fn [a, b] -> abs(b - a) <= 3 end) end defp is_strictly_increasing?(numbers) do numbers |> Enum.chunk_every(2, 1, :discard) |> Enum.all?(fn [a, b] -> a < b end) end defp is_strictly_decreasing?(numbers) do numbers |> Enum.chunk_every(2, 1, :discard) |> Enum.all?(fn [a, b] -> a > b end) end defp sequence_is_safe?(numbers) do (is_strictly_increasing?(numbers) or is_strictly_decreasing?(numbers)) and all_gaps_within_max_diff?(numbers) end def run(data) do reports = data |> String.split("\n", trim: true) p1 = part1(reports) p2 = part2(reports) IO.puts(p1) IO.puts(p2) end end data = File.read!("input.in") Day02.run(data)